The Principal Argument
In this text the notation $\textbf{arg} (z)$ is used to designate an arbitrary argument of $z,$ which means that $\textbf{arg} (z)$ is a set rather than a number. In particular, the relation $$\textbf{arg} (z_1) = \textbf{arg} (z_2)$$ is not an equation, but expresses equality of two sets.
As a consequence, two non-zero complex numbers $r_1 (\cos \varphi_1 + i \sin\varphi_1)$ and $r_2 (\cos \varphi_2 + i \sin\varphi_2)$ are equal if and only if
In order to make the argument of $z$ a well-defined number, it is sometimes restricted to the interval $(-\pi, \pi].$ This special choice is called the principal value or the main branch of the argument and is written as $\textbf{Arg}(z).$
Note that there is no general convention about the definition of the principal value, sometimes its values are supposed to be in the interval $[0, 2\pi).$ This ambiguity is a perpetual source of misunderstandings and errors.
The principal value $\textbf{Arg}(z)$ of a complex number $z=x+iy$ is normally given by $$\Theta=\arctan\left(\frac{y}{x}\right),$$ where $y/x$ is the slope, and $\arctan$ converts slope to angle. But this is correct only when $x > 0,$ so the quotient is defined and the angle lies between $-\pi/2$ and $\pi/2.$ We need to extend this definition to cases where $x$ is not positive, considering the principal value of the argument separately on the four quadrants.
The function $\textbf{Arg}(z)$ $:\mathbb C \setminus \{0\} \rightarrow \left(-\pi,\pi\right]$ is defined as follows:
We can visualize the multiple-valued nature of $\textbf{arg}(z)$ by using Riemann surfaces. The following interactive shows some of the infinite values of $\textbf{arg}(z).$ Each branch is identified with a different color.